С точностью до 0.01. Разложение в ряд тейлора. Чем сокращённый вариант записи лучше развёрнутого

Пусть требуется вычислить определенный интеграл $\int\limits_{a}^{b}f(x)dx$ с некоторой наперёд заданной точностью $\varepsilon$. Если непосредственное нахождение первообразной подынтегральной функции $f(x)$ чересчур громоздко, или же интеграл $\int f(x)dx$ вообще не берётся, то в этих случаях можно использовать функциональные ряды. В частности, применяются ряды Маклорена, с помощью которых получают разложение в степенной ряд подынтегральной функции $f(x)$. Именно поэтому в работе нам будет нужен документ с рядами Маклорена .

Степенные ряды, которые мы и станем использовать, сходятся равномерно, поэтому их можно почленно интегрировать по любому отрезку, лежащему внутри интервала сходимости. Схема решения подобных задач на вычисление интегралов с помощью рядов проста:

  1. Разложить подынтегральную функцию в функциональный ряд (обычно в ряд Маклорена).
  2. Произвести почленное интегрирование членов записанного в первом пункте функционального ряда.
  3. Вычислить сумму полученного во втором пункте числового ряда с заданной точностью $\varepsilon$.

Задачи на вычисление интегралов с помощью рядов популярны у составителей типовых расчётов по высшей математике. Поэтому в данной теме мы разберём пять примеров, в каждом из которых требуется вычислить определенный интеграл с точностью $\varepsilon$.

Пример №1

Вычислить $\int\limits_{0}^{\frac{1}{2}}e^{-x^2}dx$ с точностью до $\varepsilon=10^{-3}$.

Сразу отметим, что интеграл $\int e^{-x^2}dx$ не берётся, т.е. первообразная подынтегральной функции не выражается через конечную комбинацию элементарных функций. Иными словами, стандартными способами (подстановка, интегрирование по частям и т.д.) первообразную функции $e^{-x^2}$ найти не удастся.

Для таких задач есть два варианта оформления, поэтому рассмотрим их отдельно. Условно их можно назвать "развёрнутый" и "сокращённый" варианты.

Развёрнутый вариант оформления

ряд Маклорена :

$$e^x=1+x+\frac{x^2}{2}+\frac{x^3}{6}+\ldots$$

$$e^{-x^2}=1-x^2+\frac{\left(-x^2\right)^2}{2}+\frac{\left(-x^2\right)^3}{6}+\ldots=1-x^2+\frac{x^4}{2}-\frac{x^6}{6}+\ldots$$

Интегрируем полученное разложение на отрезке $\left$:

$$\int\limits_{0}^{\frac{1}{2}}e^{-x^2}dx=\int\limits_{0}^{\frac{1}{2}}\left(1-x^2+\frac{x^4}{2}-\frac{x^6}{6}+\ldots\right)dx=\\ =\left.\left(x-\frac{x^3}{3}+\frac{x^5}{10}-\frac{x^7}{42}+\ldots\right)\right|_{0}^{1/2}= \frac{1}{2}-\frac{1}{3\cdot{2^3}}+\frac{1}{10\cdot{2^5}}-\frac{1}{42\cdot{2^7}}+\ldots$$

Получили сходящийся знакочередующийся ряд. Это значит, что если для вычисления приближенного значения заданного интеграла взять $k$ членов полученного ряда, то погрешность не превысит модуля $(k+1)$-го члена ряда.

Согласно условию, точность $\varepsilon=10^{-3}$. Так как $\frac{1}{42\cdot{2^7}}=\frac{1}{5376}<10^{-3}$, то для достижения требуемой точности достаточно ограничиться первыми тремя членами знакочередующегося ряда:

$$\int\limits_{0}^{\frac{1}{2}}e^{-x^2}dx\approx\frac{1}{2}-\frac{1}{3\cdot{2^3}}+\frac{1}{10\cdot{2^5}}=\frac{443}{960}.$$

Погрешность полученного равенства не превышает $\frac{1}{5376}$.

Однако суммировать обычные дроби - дело утомительное, поэтому чаще всего расчёты ведут в десятичных дробях:

$$\int\limits_{0}^{\frac{1}{2}}e^{-x^2}dx\approx\frac{1}{2}-\frac{1}{3\cdot{2^3}}+\frac{1}{10\cdot{2^5}}\approx{0{,}5}-0{,}0417+0{,}0031\approx{0{,}461}.$$

Разумеется, в этом случае нужно учитывать погрешность округления. Первое слагаемое (т.е. $0{,}5$) было рассчитано точно, поэтому никакой погрешности округления там нет. Второе и третье слагаемые брались с округлением до четвёртого знака после запятой, посему погрешность округления для каждого из них не превысит $0,0001$. Итоговая погрешность округления не превысит $0+0{,}0001+0{,}0001=0{,}0002$.

Следовательно, суммарная погрешность равенства $\int\limits_{0}^{\frac{1}{2}}e^{-x^2}dx\approx{0{,}461}$ не превысит $0{,}0002+\frac{1}{5376}<10^{-3}$, т.е. значение интеграла вычислено с требуемой точностью.

Сокращённый вариант оформления

Запишем разложение функции $e^x$ в ряд Маклорена :

$$e^x=\sum\limits_{n=0}^{\infty}\frac{x^n}{n!}$$

Данное разложение верно при всех $x\in{R}$. Подставим $-x^2$ вместо $x$:

$$e^{-x^2}=\sum\limits_{n=0}^{\infty}\frac{\left(-x^2\right)^n}{n!}=\sum\limits_{n=0}^{\infty}\frac{(-1)^n\cdot{x}^{2n}}{n!}$$

Интегрируем полученный ряд на отрезке $\left$:

$$\int\limits_{0}^{\frac{1}{2}}e^{-x^2}dx=\int\limits_{0}^{\frac{1}{2}}\sum\limits_{n=0}^{\infty}\frac{(-1)^n\cdot{x}^{2n}}{n!}dx= \sum\limits_{n=0}^{\infty}\frac{(-1)^n}{n!}\int\limits_{0}^{\frac{1}{2}}x^{2n}dx=\\ =\sum\limits_{n=0}^{\infty}\frac{(-1)^n}{n!}\left.\frac{x^{2n+1}}{2n+1}\right|_{0}^{1/2}= \sum\limits_{n=0}^{\infty}\frac{(-1)^n\cdot\left(\frac{1}{2}\right)^{2n+1}}{n!\cdot(2n+1)}= \sum\limits_{n=0}^{\infty}\frac{(-1)^n}{n!\cdot(2n+1)\cdot{2^{2n+1}}}$$

$$\sum\limits_{n=0}^{\infty}\frac{(-1)^n}{n!\cdot(2n+1)\cdot{2^{2n+1}}}=\frac{1}{2}-\frac{1}{24}+\frac{1}{320}-\frac{1}{5376}+\ldots$$

Все рассуждения, что были сделаны относительно погрешностей в развёрнутом варианте оформления остаются в силе, т.е. $\int\limits_{0}^{\frac{1}{2}}e^{-x^2}dx\approx\frac{1}{2}-\frac{1}{3\cdot{2^3}}+\frac{1}{10\cdot{2^5}}\approx{0{,}461}$.

Чем сокращённый вариант записи лучше развёрнутого?

Во-первых, нам не нужно угадывать, сколько членов ряда взять в изначальном разложении, чтобы вычислить определенный интеграл с заданной точностью. Например, мы записали в самом начале решения:

$$e^{-x^2}=1-x^2+\frac{x^4}{2}-\frac{x^6}{6}+\ldots$$

Однако почему мы решили, что нужно взять именно четыре члена ряда? А вдруг нужно взять два члена ряда или пять, или сто? Если бы только шестой член ряда оказался меньше чем $\varepsilon$, - что тогда? А тогда пришлось бы возвращаться в самое начало решения, добавлять ещё пару членов ряда и интегрировать их. А если и этого не хватит, то проделать эту процедуру ещё раз.

Сокращённый вид записи таким недостатком не страдает. Мы получаем числовой ряд, записанный в общем виде, поэтому можем брать столько его членов, сколько потребуется.

Исходя из вышеперечисленных причин, я предпочитаю именно сокращённый способ записи. В дальнейнем все решения в этой теме будут оформлены в сокращённой форме.

Ответ : $\int\limits_{0}^{\frac{1}{2}}e^{-x^2}dx\approx{0{,}461}$.

Пример №2

Вычислить определённый интеграл $\int\limits_{0}^{0{,}2}\frac{1-\cos\frac{5x}{3}}{x}dx$ с точностью до $\varepsilon=10^{-3}$, разложив подынтегральную функцию в ряд Маклорена и проинтегрировав почленно.

Начнём с разложения подынтегральной функции $\frac{1-\cos\frac{5x}{3}}{x}$ в ряд Маклорена. Запишем разложение функции $\cos{x}$ в ряд Маклорена :

$$\cos{x}=\sum\limits_{n=0}^{\infty}\frac{(-1)^n\cdot{x}^{2n}}{(2n)!}$$

Данное разложение верно при всех $x\in{R}$. Подставим вместо $x$ дробь $\frac{5x}{3}$:

$$\cos{\frac{5x}{3}}=\sum\limits_{n=0}^{\infty}\frac{(-1)^n\cdot{\left(\frac{5x}{3}\right)}^{2n}}{(2n)!}= \sum\limits_{n=0}^{\infty}\frac{(-1)^n\cdot{5^{2n}}\cdot{x}^{2n}}{3^{2n}\cdot{(2n)!}}.$$

Теперь разложим $1-\cos\frac{5x}{3}$:

$$ 1-\cos\frac{5x}{3}=1-\sum\limits_{n=0}^{\infty}\frac{(-1)^n\cdot{5^{2n}}\cdot{x}^{2n}}{3^{2n}\cdot{(2n)!}} $$

Забирая из суммы $\sum\limits_{n=0}^{\infty}\frac{(-1)^n\cdot{5^{2n}}\cdot{x}^{2n}}{3^{2n}\cdot{(2n)!}}$ первый член, получим: $\sum\limits_{n=0}^{\infty}\frac{(-1)^n\cdot{5^{2n}}\cdot{x}^{2n}}{3^{2n}\cdot{(2n)!}}=1+\sum\limits_{n=1}^{\infty}\frac{(-1)^n\cdot{5^{2n}}\cdot{x}^{2n}}{3^{2n}\cdot{(2n)!}}$. Следовательно:

$$ 1-\sum\limits_{n=0}^{\infty}\frac{(-1)^n\cdot{5^{2n}}\cdot{x}^{2n}}{3^{2n}\cdot{(2n)!}}=1-\left(1+\sum\limits_{n=1}^{\infty}\frac{(-1)^n\cdot{5^{2n}}\cdot{x}^{2n}}{3^{2n}\cdot{(2n)!}}\right)=\\ =-\sum\limits_{n=1}^{\infty}\frac{(-1)^n\cdot{5^{2n}}\cdot{x}^{2n}}{3^{2n}\cdot{(2n)!}} =\sum\limits_{n=1}^{\infty}\frac{-(-1)^n\cdot{5^{2n}}\cdot{x}^{2n}}{3^{2n}\cdot{(2n)!}}=\sum\limits_{n=1}^{\infty}\frac{(-1)^{n+1}\cdot{5^{2n}}\cdot{x}^{2n}}{3^{2n}\cdot{(2n)!}}. $$

Последнее, что остаётся - это разделить на $x$:

$$ \frac{1-\cos\frac{5x}{3}}{x}=\frac{1}{x}\cdot\sum\limits_{n=1}^{\infty}\frac{(-1)^{n+1}\cdot{5^{2n}}\cdot{x}^{2n}}{3^{2n}\cdot{(2n)!}}= \sum\limits_{n=1}^{\infty}\frac{(-1)^{n+1}\cdot{5^{2n}}\cdot{x}^{2n-1}}{3^{2n}\cdot{(2n)!}}. $$

Интегрируем данное разложение на отрезке $\left$:

$$ \int\limits_{0}^{0{,}2}\frac{1-\cos\frac{5x}{3}}{x}dx=\int\limits_{0}^{\frac{1}{5}}\sum\limits_{n=1}^{\infty}\frac{(-1)^{n+1}\cdot{5^{2n}}\cdot{x}^{2n-1}}{3^{2n}\cdot{(2n)!}}dx= \sum\limits_{n=1}^{\infty}\frac{(-1)^{n+1}\cdot{5^{2n}}}{3^{2n}\cdot{(2n)!}}\int\limits_{0}^{\frac{1}{5}}{x}^{2n-1}dx=\\ =\sum\limits_{n=1}^{\infty}\frac{(-1)^{n+1}\cdot{5^{2n}}}{3^{2n}\cdot{(2n)!}}\cdot\left.\frac{x^{2n}}{2n}\right|_{0}^{1/5}= \sum\limits_{n=1}^{\infty}\frac{(-1)^{n+1}}{{2n}\cdot 3^{2n}\cdot{(2n)!}} $$

Получили знакочередующийся ряд. Запишем несколько первых членов этого ряда (до тех пор, пока записанный член не станет меньше $\varepsilon$):

$$\sum\limits_{n=1}^{\infty}\frac{(-1)^{n+1}}{{2n}\cdot 3^{2n}\cdot{(2n)!}}=\frac{1}{36}-\frac{1}{7776}+\ldots$$

Так как $\frac{1}{7776}<\varepsilon$, то для вычисления интеграла с точностью $\varepsilon$ достаточно первого члена полученного числового ряда:

$$\int\limits_{0}^{0{,}2}\frac{1-\cos\frac{5x}{3}}{x}dx\approx\frac{1}{36}\approx{0{,}028}.$$

Ответ : $\int\limits_{0}^{0{,}2}\frac{1-\cos\frac{5x}{3}}{x}dx\approx{0{,}028}$.

Продолжение темы вычисления интегралов с помощью рядов Маклорена продолжим во

Пусть требуется найти У 2,35104 с точностью до (с недостатком). Расположим вычисления так:

Мы сначала находим приближённый корень с точностью до 1 только из целого числа 2. Получим 1 (и в остатке 1). Пишем в корне цифру 1 и ставим после неё запятую. Теперь находим цифру десятых. Для этого приписываем к остатку 1 цифры 3 и 5, стоящие направо от запятой, и продолжаем извлечение так, как будто мы извлекали корень из целого числа 235. Полученную цифру 5 пишем в корне на месте десятых. Остальные цифры подкоренного числа (104) нам не нужны. Что полученное число 1,5 будет действительно приближённым корнем С точностью до видно наследующего; если бы

мы находили наибольший целый корень из 235 с точностью до 1, то получили бы 15, значит,

Разделив каждое из этих чисел на 100, получим;

в, наконец,

Пусть требуется найти с точностью до приближённый с недостатком. Найдём целое число, потом - цифру десятых, затем и цифру сотых. Корень из целого числа будет 15 целых. Чтобы получить цифру десятых, надо, как мы видели, приписать к остатку 23 еще две цифры, стоящие направо от запятой:

В нашем примере этих цифр нет вовсе; ставим на их место нули. Приписав их к остатку и продолжая действие так, как будто находим корень из целого числа 24 800, мы найдём цифру десятых 7. Остаётся найти цифру сотых. Для этого приписываем к остатку 151 ещё два нуля и продолжаем извлечение, как будто мы находим корень из целого числа 2 480000. Получаем 15,74. Что это число действительно есть приближённый корень из 248 с точностью до с недостатком, видно из следующего. Если бы мы находили наибольший целый квадратный корень из целого числа 2 480 000, то получили бы 1574, значит,

Разделив каждое из этих чисел на 10 000 (100^2), получим:

Значит, 15,74 есть та десятичная дробь, которую мы назвали приближённым корнем с недостатком с точностью до из 248.

Правило. Чтобы извлечь из данного целого числа или из данной десятичной дроби приближенный корень с недостатком с точностью до до до и т. д., находят сначала приближенный корень с недостатком с точностью до 1, извлекая корень из целого числа (если его нет, пишут в корне 0 целых).

Потом находят цифру десятых. Для этого к остатку приписывают две цифры подкоренного числа, стоящие направо от запятой (если их нет, приписывают к остатку два нуля), и продолжают извлечение так, как это делается при извлечении корня из целого числа. Полученную цифру пишут в корне на месте десятых.

Затем находят цифру сотых. Для этого к остатку приписывают снова две цифры, стоящие направо от тех, которые были только что снесены, и т. д.

Таким образом, при извлечении корня из целого числа с десятичной дробью число надо делить на грани по две цифры в каждой, начиная от запятой, как влево (в целой части числа), так и вправо (в дробной части).

1. Извлечь с точностью до корни:

2. Извлечь с точностью до

В последнем примере мы обратили дробь у в десятичную, вычислив восемь десятичных знаков, чтобы образовались четыре грани, потребные для нахождения четырёх десятичных знаков корня.

И в 7-м и в 8-м классе мы часто решали уравнения графически. Заметили ли вы, что практически во всех таких примерах уравнения имели «хорошие» корни? Это были целые числа, которые без труда отыскивались с помощью графиков, особенно на клетчатой бумаге. Но так бывает далеко не всегда, просто мы до сих пор подбирали «хорошие» примеры.

Рассмотрим два уравнения: = 2 - х и = 4 - х. Первое уравнение имеет единственный корень х = 1, поскольку графики функций у = и у = 2 - х пересекаются в одной точке А (1; 1) (рис. 112). Во втором случае графики функций — фс и у = 4 - х также пересекаются в одной точке В (рис. 113), но с «плохими» координатами. Пользуясь чертежом, можно сделать вывод, что абсцисса точки В примерно равна 2,5. В подобных случаях говорят не о точном, а о приближенном решении уравнения и пишут так:


Это одна из причин, по которым математики решили ввести понятие приближенного значения действительного числа. Есть и вторая причина, причем, может быть, даже более важная.Что такое действительное число? Это бесконечная десятичная дробь. Но производить вычисления с бесконечными десятичными дробями неудобно, поэтому на практике пользуются приближенными значениями действительных чисел. Например, для числа пользуются приближенным равенством 3,141 или 3,142. Первое называют приближенным значением (или приближением) числа п по недостатку с точностью до 0,001; второе называют приближенным значением (приближением) числа к по избытку с точностью до 0,001. Можно взять более точные приближения: например,
3,1415 — приближение по недостатку с точностью до 0,0001; 3,1416 — приближение по избытку с точностью до 0,0001. Можно взять менее точные приближения, скажем, с точностью до 0,01: по недостатку 3,14, по избытку 3,15.
Знак приближенного равенства » вы использовали и в курсе математики 5—6-го классов и, вероятно, в курсе физики, да и мы пользовались им раньше, например в § 27.

Пример 1. Найти приближенные значения по недостатку и по избытку с точностью до 0,01 для чисел:

Решение,

а) Мы знаем, что = 2,236... (см. § 27), следовательно, 2,23 — это приближение по недостатку с точностью до 0,01; 2,24 — это приближение по избытку с точностью до 0,01.
б) 2 + = 2,000... + 2,236... = 4,236... . Значит, 2 + 4,23 — это приближение по недостатку с точностью до 0,01; 2 + 4,24 — это приближение по избытку с точностью до 0,01.
в) Имеем 0,31818... (см. § 26). Таким образом, 0,31 — это приближение по недостатку с точностью до 0,01; 0,32 — это приближение по избытку с точностью до 0,01.
Приближение по недостатку и приближение по избытку называют иногда округлением числа.

Определение. Погрешностью приближения (абсолютной погрешностью) называют модуль разности между точным значением величины х и ее приближенным значением а: погрешность приближения — это | х - а |.
Например, погрешность приближенного равенства выражается как или соответственно как ,
Возникает чисто практический вопрос: какое приближение лучше, по недостатку или по избытку, т. е. в каком случае погрешность меньше? Это, конечно, зависит от конкретного числа, для которого составляются приближения. Обычно при округлении положительных чисел пользуются следующим пра-
вилом:

Применим это правило ко всем рассмотренным в этом параграфе числам; выберем для рассмотренных чисел те приближения, для которых погрешность окажется наименьшей.
1) = 3,141592... . С точностью до 0,001 имеем 3,142; здесь первая отбрасываемая цифра равна 5 (на четвертом месте после запятой), поэтому взяли приближение по избытку.
С точностью до 0,0001 имеем 3,1416 — и здесь взяли приближение по избытку, поскольку первая отбрасываемая цифра (на пятом месте после запятой) равна 9. А вот с точностью до 0,01 надо взять приближение по недостатку: 3,14.
2) = 2,236... . С точностью до 0,01 имеем 2,24
(приближение по избытку). ¦
3) 2 + = 4,236... . С точностью до 0,01 имеем 2 + 4,24 (приближение по избытку).
4) = 0,31818... . С точностью до 0,001 имеем 0,318 (приближение по недостатку).
Рассмотрим последний пример подробнее. Возьмем укрупненный фрагмент координатной прямой (рис. 114).

Точка принадлежит отрезку , значит, ее расстояния от концов отрезка не превосходят длины отрезка. Расстояния точки от концов
отрезка равны соответственно отрезка равна 0,001. Значит, и
Итак, в обоих случаях (и для приближения числа по недостатку, и для приближения его по избытку) погрешность не превосходит 0,001.
До сих пор мы говорили: приближения с точностью до 0,01, до 0,001 и т. д. Теперь мы можем навести порядок в использовании терминологии.
Если а — приближенное значение числа х и , mo говорят, что погрешность приближения не превосходит h или что число х равно числу а с

точностью до h.

Почему же важно уметь находить приближенные значения чисел? Дело в том, что практически невозможно оперировать с бесконечными десятичными дробями и использовать их для измерения величин. На практике во многих случаях вместо точных значений берут приближения с заранее заданной точностью (погрешностью). Эта идея заложена и в калькуляторах, на дисплеях которых высвечивается конечная десятичная дробь, т. е. приближение выводимого на экран числа (за редким исключением, когда выводимое число представляет собой конечную десятичную дробь, умещающуюся на экране).

Пусть требуется найти с точностью до (с недостатком). Расположим вычисления так:

Мы сначала находим приближенный корень с точностью до 1 только из целого числа 2. Получим 1 (и в остатке 1). Пишем в корне цифру 1 и ставим после нее запятую. Теперь находим цифру десятых. Для этого приписываем к остатку 1 цифры 3 и 5, стоящие направо от запятой, и продолжаем извлечение так, как будто мы извлекали корень из целого числа 235. Полученную цифру 5 пишем в корне на месте десятых. Остальные цифры подкоренного числа (104) нам не нужны. Что полученное число 1,5 будет действительно приближенным корнем с точностью до , видно из следующего; если бы мы находили наибольший целый корень из 235 с точностью до 1, то получили бы 15, значит,

Разделив каждое из этих чисел на 100, получим:

(От прибавления числа 0,00104 двойной знак ≤ должен измениться, очевидно, на знак <, а знак > остается (так как 0,00104 < 0,01).)

Пусть требуется найти с точностью до приближенный с недостатком. Найдем целое число, потом - цифру десятых, затем и цифру сотых. Корень из целого числа будет 15 целых. Чтобы получить цифру десятых, надо, как мы видели, приписать к остатку 23 еще две цифры, стоящие направо от запятой:

В нашем примере этих цифр нет вовсе; ставим на их место нули. Приписав их к остатку и продолжая действие так, как будто находим корень из целого числа 24800, мы найдем цифру десятых 7. Остается найти цифру сотых. Для этого приписываем к остатку 151 еще два нуля и продолжаем извлечение, как будто мы находим корень из целого числа 2480000. Получаем 15,74. Что это число действительно есть приближенный корень из 248 с точностью до с недостатком, видно из следующего. Если бы мы находили наибольший целый квадратный корень из целого числа 2480000, то получили бы 1574, значит,

Разделив каждое из этих чисел на 10000 (1002), получим:

15,74 2 ≤ 248; 15,75 2 > 248.

Значит, 15,74 есть та десятичная дробь, которую мы назвали приближенным корнем с недостатком с точностью до до 248.

Правило . Чтобы извлечь из данного целого числа или из данной десятичной дроби приближенный корень с недостатком с точностью до , до , до и т. д., находят сначала приближенный корень с недостатком с точностью до 1, извлекая корень из целого числа (если его нет, пишут в корне 0 целых).

Потом находят цифру десятых. Для этого к остатку приписывают две цифры покоренного числа, стоящие направо от запятой (если их нет, приписывают к остатку два нуля), и продолжают извлечение так, как это делается при извлечении корня из целого числа. Полученную цифру пишут в корне на месте десятых.

Затем находят цифру сотых. Для этого к остатку приписывают снова две цифры, стоящие направо от тех, которые были только что снесены, и т. д.

Таким образом, при извлечении корня из целого числа с десятичной дробью число надо делить на грани по две цифры в каждой, начиная от запятой, как влево (в целой части числа), так и вправо (в дробной части) .

Примеры.

В последнем примере мы обратили дробь в десятичную, вычислив восемь десятичных знаков, чтобы образовались четыре грани, потребные для нахождения четырех десятичных знаков корня.

Вверх